(Ste. arch Park's fresentation at 6-13-79 lunchem at Pecara Symposium)

REMOTE SENSING MILESTONES

• WW II	DEVELOPMENT OF CAMOUFLAGE DETECTION FILM (C.I.R.)
• 1953	COLWELL DEMONSTRATED DISEASE DETECTION PUBLISHED IN 1956
• 1956	SOVIET PUBLISHED PAPER ON USE OF SPECTRAZONAL PHOTOGRAPHY FOR MAPPING SOILS
• 1961	WILLOW RUN LABS (ERIM) BUILT AN AIRBORNE MULTI- SPECTRAL SCANNER
• 1963 (CIRCA)	ITEK BUILT A NINE LENS CAMERA
0 1963	NAS STUDY FOR USDA ON USE OF MILITARY RECONNAISSANCE DEVICES FOR AGRICULTURE
• 1964	NASA PROGRAM DEFINITION

REMOTE SENSING MILESTONES

NASA PROGRAM INSTRUMENT TEAMS

@ CAMERA TEAM

- 150 MM METRIC MAPPING
- 300 MM LARGE FORMAT (225X450) METRIC MAPPING
- 600 MM PANORAMIC
- 150 MM MULTIBAND

. INFRARED TEAM

- SINGLE THERMAL BAND (8-14 Jum)
- MULTI CHANNEL THERMAL SPECTROSCOPY
- MULTISPECTRAL SCANNER

MICROWAVE TEAM

- L, C, X, Ku, Ka BAND SLAR
- L, C, X PASSIVE RADIOMETERS

EARTH RESOURCES SURVEY PROGRAM (1964 - 1972 NASA SR&T PROGRAM)

- APPLICATIONS DEFINITION
- LABORATORY RESEARCH FIELD RESEARCH A/C RESEARCH
- LANDSAT DEFINITION (67)
- 6 APOLLO EXPERIMENT (69) S-065
 - MULTISPECTRAL CAMERA ~ LANDSAT SPECTRAL INTERVALS
 - PROOF OF CONCEPT

LANDSAT DEFINITION

USDI

- ORBITAL CHARACTERISTICS
- PAYLOAD R.B.V.
 - 2 WITH 100 METER G.R.D. (RED & IR)
 - 1 WITH 25 METER G.R.D. (PANCHROMATIC)
 - CARTOGRAPHIC ACCURACY
 - LATER GREEN, RED AND IR CAMERAS

USDA

- 9:30 EQUATOR CROSSING
- M.S.S.
 - REPRODUCE C.I.R.
 - RADIOMETRIC ACCURACY

LANDSAT DEFINITION

TRADES:

- MORPHOLOGY SHADOWS VS. HIGH SUMMER SUN
- CLOUD COVER VS. TIME OF DAY (f) LOCATION
- FREQUENCY OF OBSERVATION VS. FOV
- FREQUENCY OF OBSERVATION VS. SPATIAL RESOLUTION
 - (f) COMPLETE COVERAGE
 - (f) BANDWIDTH OF STADAN NET
 - (f) STATE OF ART RECORDERS

LANDSAT DEFINITION

RESULTS:

- 18 DAY COVERAGE COMPROMISED SEVERAL APPLICATIONS
 - E.G. SNOW SURVEY DECIDED NOT TO DO IT
 - EVEN TWO SATELLITES NOT FREQUENT ENOUGH
- GIVEN 18 DAYS ALL OTHER PARAMETERS SET
 - F.O.V. 185 KM AT EQUATOR WITH 10% SIDELAP
 - PHOTON LIMITED MSS AT 80 METER SPATIAL RESOLUTION AT 6 BIT ACCURACY
 - STADAN NET 20 MBITS MSS = 16.5

LANDSAT DEFINITION

- GLOBAL REPETITIVE CYCLE SELECTED
- ORIGINAL SPATIAL RESOLUTION WAS DEFINED AS A RESULT OF THE TRADE STUDIES
- SPECTRAL INTERVAL (100 nm) DEMANDED BY ORBIT
- BAND CENTERS CHOSEN TO REPRODUCE C.I.R.
- THEMATIC MAPPER BAND CENTERS DEFINED AT SAME TIME
- VISIBLE SPECTRUM SLIGHTLY MODIFIED AS A RESULT OF LATER RESEARCH

SENSOR PARAMETERS AFFECTING DATA ANALYSIS

- 1) SPATIAL RESOLUTION
- 2) SPECTRAL RESOLUTION
- 3) SIGNAL-TO-NOISE RATIO

SPATIAL RESOLUTION

- IT IS GENERALLY NOT POSSIBLE TO MEASURE THE ENERGY RADIATING FROM A GIVEN MATERIAL UNLESS THE MATERIAL OCCUPIES A SIGNIFICANT PORTION OF THE INSTANTANEOUS FIELD OF VIEW (IFOV)
 - N.A.S. STUDY STATES 60 PIXELS
 - LANDSAT 1 ~ 60 ACRES
 - LANDSAT-D ~ 10 ACRES
- SPATIAL RESOLUTION IS THE PRINCIPAL PARAMETER IN MENSURATION

SPECTRAL RESOLUTION AND S/N

- INFORMATION THEORY (IEEE, 1968) "PROBABILITY OF CORRECT CLASSIFICATION = (f) MEASUREMENT COMPLEXITY"
- MEASUREMENT COMPLEXITY = (n) SPECTRAL BANDS X SIGNAL
 QUANTIZATION PRECISION
- SIGNAL QUANTIZATION <u>~</u> S/N

MEASUREMENT COMPLEXITY

- LANDSAT 1 = 4 BANDS X 64 = 256
- LANDSAT-D = 7 BANDS X 256 = 1792

IMPROVEMENT FACTOR = 7

SPECTRAL RESOLUTION AND S/N

- THEORY ASSUMES COMPLETE (INFINITE) KNOWLEDGE OF CLASSES
- PRACTICAL PROBLEM IS FINITE
- THEORY SHOWS A DEFINITE INFLECTION (POINT OF DIMINISHING RETURNS)
- PHENOMENON HAS BEEN OBSERVED IN AIRCRAFT ANALYSIS

SPECTRAL RESOLUTION AND S/N

- INTRINSIC DIMENSIONALITY FOUR (VISIBLE AND NEAR IR) (MSS)
- POTENTIAL DIMENSIONALITY SIX (ADD MIDDLE AND THERMAL IR) (TM)
- PROBABLE DIMENSIONALITY OF TM DATA

FEATURE A - BANDS 2, 4, 5, AND 6

FEATURE B = BANDS 1, 3, 6, AND 7

FEATURE C - BANDS 2, 3, 5, AND 7

SIGNAL-TO-NOISE

- 6 BITS = VEGETATION VS. BARE SOIL VS. WATER
- 7 BITS CROP SPECIES DISCRIMINATION
- 8 BITS CEREAL GRAIN DISCRIMINATION

AND

ABILITY TO USE THE ADDITIONAL SPECTRAL DIMENSIONALITY

Figure 5. Diffuse reflectance, transmittance, and absorptance [100 - (percent transmittance + percent reflectance)] of the upper (adaxial) surface of a mature orange leaf (Citrus sinensis (L.) Osbeck).

MSS MEASUREMENTS

BAND 4 - GREEN/YELLOW - PLANT PIGHENTS

BAND 5 - YELLOW/RED - CHLOROPHYLL ABSORPTION

BAND 6 - NEAR INFRARED - LEAF, TURGOR+

BAND 7 - NEAR INFRARED - LEAF TURGOR

^{*} TURGOR = INTRACELLULAR WATER PRESSURE

Table 2. THEMATIC MAPPER SPECTRAL AND RADIOMETRIC CHARACTERISTICS

BAND	WAVELENGTII (um)	Ν Ε 'Λρ	BASIC PRIMARY RATIONALE FOR VEGETATION
TM 1	0.45-0.52	0.008	Sensitivity to chlorophyll and carotinoid concentrations
TM 2	0.52-0.60	0.005	Slight sensitivity to chlorophyll plus green region characteristics
CM 3	0.63-0.69	0.005	Sensitivity to chlorophyll
M 4	0.76-0.90	0.005	Sensitivity to vegetational density or biomass
M 5	1.55-1.75	0.01	Sensitivity to water in plant leaves
M 6	2.08-2.35	0.024	Sensitivity to water in plant leaves
1 7	10.4-12.5	0.5K	Thermal properties

MEASUREMENTS

A STATE

- ALL MEASUREMENTS ARE RELATED TO PLANT GROWTH AND CONDITION
- SOME MEASUREMENTS ARE SIGNIFICANT IN TERMS OF SPECIES

 E.G. CHLOROPHYLL ABSORPTION IN RICE
- NONE OF THE MEASUREMENTS IS CONSISTENTLY UNIQUE EITHER WITHIN A FIELD OR BETWEEN FIELDS TO BE A CANDIDATE FOR A "SIGNATURE"
- DISCRIMINATION IS RELATED TO BOTH SPECIES AND STAGE OF GROWTH
- IDENTIFICATION BECOMES POSSIBLE USING TIME AS THE DISCRIMINANT

 IN A PHENOLOGICAL MODEL

EPISODE SENSOR SYSTEM

BIOLOGICAL SIGNIFICANCE

- MSS BANDS 4, 5, (6 OR 7) AND (7/6)
- 0.1% CHANGE PHYSIOLOGICAL EFFECT
- 1.0% CHANGE CANOPY EFFECT
- 10% CHANGE PLANT COMMUNITY EFFECT

VEGETATION RESOURCE MANAGEMENT

- IDENTIFY AND MEASURE FOOD CROP PLANTS
- MODEL FOOD CROP PLANT GROWTH
- STRESS MODEL DEVELOPMENT
- MODEL YIELD
- IDENTIFY AND MEASURE TIMBER
- ECOZONE BOUNDARY DEFINITION--SIGNATURE EXTENSION
- WILDLIFE HABITAT MAPPING

LAND RESOURCE MANAGEMENT

- LAND USE CLASSIFICATION CODES DEVELOPED
 APPROVED BY USGS, HUD, EPA, CENSUS
- PLANIMETRIC MAP PRODUCTION 1:250,000
- THEMATIC MAP PRODUCTION 1:100,000

• POPULATION DENSITY/LAND USE CHANGES (CENSUS ASVT)

LANDSAT I, II, III

MINERAL RESOURCE MANAGEMENT

- SURVEY COST REDUCTION
- SATELLITE UNIQUE OBSERVATIONS
- GEOMORPHIC, TECTONIC/SEISMIC SURVEYS
- MINERAL/PETROLEUM PROBABILITY MODELLING
- LIMITED LITHOLOGIC MAPPING

WATER RESOURCE MANAGEMENT

- MAP SURFACE WATER
- MONITOR SURFACE WATER AREA FLOOD DROUGHT
- MONITOR SNOW LINE
- MAP WETLANDS
- MYDROLOGIC MODELS
 - RIVER BASIN RUN-OFF
 - SOIL MOISTURE

LEAF SPECTRA

EARTH OBSERVATION & SHUTTLE PROGRAMS

- RATIO 6/7 IS (f) MATURITY
- RADIANCE OF BOTH BANDS INCREASES UNTIL LAI ____.4
- CANOPY 6/7 ~ STABLE UNTIL RIPENING
- STRESS CAUSES EARLY REDUCTION IN BAND 6 RADIANCE
- RESULTING RATIO 6/7 CHANGE IS DETECTABLE